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All vectors are
NOT created equal.

The directed quantities
 displacements
« gradients
* “normals” to surfaces
* fluxes

appear to be so because of

symmetries

 dimensionality of the vector space
orientability of the vector space
existence of a “volume-form”
existence of a “metric tensor”
signature of the metric

These symmetries blur the
true nature of the directed quantity.
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What is vector?

“something with a magnitude and direction”?
Well... no... that's a “Euclidean Vector”
(a vector with a metric [a rule for giving
the lengths of vectors and
the angles between vectors))
Not all vectors in physics are Euclidean vectors.

A vector space is a set with the properties of
e addition
(the sum of two vectors is a vector)
 scalar multiplication
(the product of a scalar and a vector is a vector)
Elements of this set are called vectors.

What is tensor?

A tensor [of rank n] is a multilinear function of n vectors
(that is, inputting n vectors produces a scalar).

They are useful for describing anisotropic
(direction-dependent) physical quantities.

For example,

metric tensor

moment of inertia tensor
elasticity tensor
conductivity tensor
electromagnetic field tensor
stress tensor

e riemann curvature tensor

If the vector has, for example, 3 components,
then a rank-n tensor has 3" components.
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In three dimensions,
there are eight directed quantities.

SIMULTANEOTUS IDENTIFICATIONS

From J.A. Schouten, Tensor Calculus for Physicists.
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VECTORS V~°

Representations

» ordered PAIR OF POINTS with finite separation
 directed line-segment (“an ARROW”)

The separation is proportional to its size.

Examples:

« displacement r°[in meters]asinU =1k r°r’

« electric dipole moment  P* = d*[in Coulomb-meters] as in U = —p°E,
» velocity V*[in meters/sec] as in K :%mabvavb

acceleration a°[in meters/sec’]asin F, =m_ &’

\A +  W¢ = V*+W*

(viathe parallelogram rule)
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COVECTORS (ONE-FORMS) (),

Representations
 ordered PAIR OF PLANES (wV*® =0 and wV® =1) with
finite separation

 (“TWIN-BLADES")
The separation is inversely-proportional to its size.

Examples:
« gradient U f[in[[ f][meters™]
- conservative force F =—[] U [in Joules/meter] as in U =—p°E,

 linear momentum “pP, :E” [in action/meter]

0 = 0S _ dL 0 oH
a aqa aqa a aqa a

« electrostatic field = —L],@lin Voltsimeter], ¢ =—[E

Ea
* magnetic field H~ [in Amperes/meter] as in ienclosed :faAI:Ia

a

a+’7a

(via the co-parallelogram rule)
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BIVECTORS A?°

Representations

« ordered PAIR OF VECTORS (via the wedge product)
 directed two-dimensional planar region (“an AREA”)
The areais proportional to its size.

Examples:

« area A”[in meters? as in A" =|"w"

- magnetic dipole moment U* = IA®[in Ampere-meter’] asin U = —U*B_
Ve A W = ViAW"

(like the “cross-product”)

&

U [a(Vb] +Wb])

¥ LG
)

U [a\ 7 b] + U [aWb]
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TWO-FORMS [3_,

Representations
» ordered PAIR OF CLOSED CURVES

 directed cylinder (“a TUBE”) with finite cross-sectional area
The cross-sectional area is inversely-proportional to its size.

Examples:
- magnetic induction B_ [Weber/meter’=Tesla]

(magnetic flux per cross-sectional area) as in ﬂw Bab =0

—~

« electric induction D, [Coulomb/meter?]

—~

(electric flux per cross-sectional area) as in ff, D,=4m

e current density ]:b [Ampere/meter?]

—~

(charge flux per cross-sectional area) as in §,, H = a[J 5bc + 47'['[[A Tbc

« Poynting vector S, =4 E_H,, [Watt/meter’]
(energy flux per cross-sectional area)

N
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TRANSVECTION / INNER PRODUCT
(nonmetrical “dot product”) -

v B = VB, =0

In Gravitation (Misner, Thorne, Wheeler), this operation is
described as counting the “bongs of a bell”.
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METRIC TENSOR Jd..

A metric tensor is a symmetric tensor that can be used
to assign “magnitudes” to vectors.

VI =g vV
A metric tensor can also provide arule to identify a
vector with a unique covector. The vector and its
covector are “duals” of each other with this metric.
Given a vector V?, in the presence of a metric,
we can form the combination g_V*, which is a covector denoted by V. .

This is known as “index lowering”, a particular move when performing
“index gymnastics”.

the Euclidean metric:

This construction is due to
W. Burke, Applied Differential

V= gabVa Geometry.

(the*pda”)  gee also Burke, Spacetime,

A Geometry, and Cosmology.
’v through the tip of the vectors,
V

draw the tangentsto the circle

a (the “pale™)

A similar pole-polar relationship can be demonstrated for
Galilean Minkowski
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A vector of length 2
with a Euclidean metric.

Note that Va(gabvb) = ("Iength of Van)2 '

Here V2(g, V") =4.

= +.0 ﬁizl;;'-' H.5D .. (r.llH H.N, +1.80 I« W.05

—" - ;-

.
a--—""

\ — - | A timelike vector of

’g ——_" | [about] length 2

with a Minkowski metric.

‘\,

=438 &i:‘(g... #2.9%0 (r,ln)-t H.m, .M I« +3.8D0

A lightlike vector has
zero length with a
Minkowski metric.

= -3 s.-‘n-c 2.8, .50 Cr,a= 40.09, #3.00 I~ 10.00
.60 |
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In three dimensional space, the following are not

directed-quantities.

TRIVECTORS V32P°

Representations

o ordered TRIPLE OF VECTORS

» sensed regions (“a VOLUME") with finite size
The volume is proportional to its size.

Examples:
« volume V *[in meters®] as in V** =["w’h*

THREE-FORMS V., .

Representations
» ordered TRIPLE OF COVECTORS
» cells (“a BOX") which contain a finite volume

12 of 14

The enclosed-volume is inversely-proportional to its size.

Examples:
® charge density ﬁabc [in Coulombs/meter®] as in (] = J’IL ﬁabc

* energy density U, _[in Joules/meter®] asin U, =& E.D,,

A volume form provides arule to identify a vector with a
unique two-form (in three dimensions), and vice versa.

Vectors that are obtained from [ordinary] two-forms in

this way are known as pseudovectors.
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MAXWELL EQUATIONS

1

= @, =

bc

Ampere-Maxwell I Faraday I

These diagrams are from
W. Burke, Applied Differential Geometry.

To seethese rendered in three dimensions, visit the
VRML Gallery of Electromagnetism at

physics.syr.edu/courses/vrml/el ectromagnetism
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