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:KD � L � YHFWRU"
“something with a magnitude and direction”?

Well... no... that’s a “Euclidean Vector”
(a vector with a metric [a rule for giving

the lengths of vectors and
the angles between vectors])

Not all vectors in physics are Euclidean vectors.

A vector space is a set with the properties of
• addition

(the sum of two vectors is a vector)

• scalar multiplication
(the product of a scalar and a vector is a vector)

Elements of this set are called vectors.

:KD � L � WHQVRU"

A tensor [of rank n] is a multilinear function of n vectors
(that is, inputting n vectors produces a scalar).
They are useful for describing anisotropic
(direction-dependent) physical quantities.
For example,

• metric tensor
• moment of inertia tensor
• elasticity tensor
• conductivity tensor
• electromagnetic field tensor
• stress tensor
• riemann curvature tensor

If the vector has, for example, 3 components,
then a rank-n tensor has 3n components.
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In three dimensions,
there are eight directed quantities.

From J.A. Schouten, Tensor Calculus for Physicists.
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Representations
• ordered PAIR OF POINTS with finite separation
• directed line-segment (“an ARROW”)
The separation is proportional to its size.

Examples:
• displacement ar [in meters] as in 

ba

ab
rrkU 2

1=
• electric dipole moment aa qdp = [in Coulomb-meters] as in 

a

a EpU −=
• velocity av [in meters/sec] as in 

ba

ab
vvmK 2

1=
acceleration aa [in meters/sec2] as in 

b

aba
amF =

    +                         =

                  aV         +      aW              =         aa WV +
                                                                 (via the parallelogram rule)
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Representations
• ordered PAIR OF PLANES ( 0=a

a
Vω  and 1=a

a
Vω ) with

finite separation
•  (“TWIN-BLADES”)
The separation is inversely-proportional to its size.

Examples:
• gradient f

a
∇ [in [ ⋅][ f meters-1]

• conservative force UF
aa

−∇= [in Joules/meter] as in 
a

a EpU −=

• linear momentum “
aa

p
λ
!= ” [in action/meter]

 
aaa q

L

q

S
p

�∂
∂=

∂
∂=

aaa
F

q

H
p =

∂
∂−=

• electrostatic field φ
aa

E −∇= [in Volts/meter], ∫−= γφ
a

E

• magnetic field
a

H
~

 [in Amperes/meter] as in ∫= ∂A aenclosed
Hi
~

           +                               =

                   
a

ω                +            
a

η              =         
aa

ηω +
                                                                          (via the co-parallelogram rule)
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Representations
• ordered PAIR OF VECTORS (via the wedge product)
• directed two-dimensional planar region (“an AREA”)
The area is propo rtional to its s ize.

Examples:
• area abA [in meters2] as in ][ baab wlA =
• magnetic dipole moment abab iA=µ [in Ampere-meter2] as in 

ab

ab BU µ−=

                                    =

                   aV                      aW              =         ][ baWV
                                                                          (like the “ cross-produ ct” )

                             +                                 =

               ][ baVU    +      ][ baWU               =         )( ]][ bba WVU +
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7� :2�� )� 25� 0 �� βDE
Representations
• ordered PAIR OF CLOSED CURVES
• directed cylinder (“a TUBE”) with finite cross-sectional area
The cross-sectional area is inversely-proportional to its size.

Examples:
• magnetic induction

ab
B  [Weber/meter2=Tesla]

(magnetic flux per cross-sectional area) as in 0=∫∫∂ abV
B

• electric induction
ab

D
~

 [Coulomb/meter2]

(electric flux per cross-sectional area) as in 
enclosedabV

qD π4
~ =∫∫∂

• current density
ab

j~  [Ampere/meter2]

(charge flux per cross-sectional area) as in ∫∫+∫∫=∫ ∂
∂

∂ A bcA bctA a
jDH ~4

~~ π
• Poynting vector

][4
1

~~
baab

HES π=  [Watt/meter2]

(energy flux per cross-sectional area)

                                                                             =
                                    =

                   
a

α                                  
a

β                 =         
][ ba

βα

                                 +                                          =

        
][ ba

βα                +              
][ ba

γα                     =         )(
]][ bba

γβα +
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75$169(&7, � � � ,11( � 352'8&7

�QRQPHWULFD � ´GR � SURGXFWµ�

                                                                =                         = 1

                    aV                       
a

ω               =       
a

aV ω           = 1

                                                               =                          = 2

                    aV                       
a

ω2               =       )2(
a

aV ω     = 2

                                                               =                          = 0

                    aV                       
a

β              =          
a

aV β         = 0

In Gravitation (Misner, Thorne, Wheeler), this operation is
described as counting the “bongs of a bell”.
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0(75, � 7(162 � JDE
A metric tensor is a symmetric tensor that can be used
to ass ign “ magnitudes” to vectors.

ba

ab
VVgV =2

A metric tensor can also provide a rule to identify a
vector with a unique covector. The vector and its
covector are “ duals” of each other with this metric.

Given a vector aV , in the presence of a metric,
we can form the combination a

ab
Vg , which is a covector denoted by 

b
V .

This is known as “ index lowering” , a particular move when performing
“ index gymnastics” .

W ��� (XFOLGHD � PHWULF�

A similar pole-polar relationship can be demonstrated for

*DOLOHDQ 0LQNRZVNL

Va (the “pole”)

Vb=gabV
a

(the “polar” )

gab

This construction is due to
W. Burke, Applied Differential
Geometry.

See also Burke, Spacetime,
Geometry, and Cosmology.

through the tip of the vectors,
draw the tangents to the circle
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A lightlike vector has
zero length with a
Minkowski metric.

A vector of length 2
with a Euclidean metric.

A timelike vector of
[about] length 2
with a Minkowski metric.

Note that 2)" oflength (")( ab
ab

a VVgV =� .

Here 4)( =�b
ab

a VgV .
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In three dimensional space, the following are not
directed-quantities.

75,9(&7256 9DEF
�����

Representations
• ordered TRIPLE OF VECTORS
• sensed regions (“a VOLUME”) with finite size
The volume is proportional to its size.

Examples:
• volume abcV [in meters3] as in ][ cbaabc hwlV =

7+5((�)250
� γD� E� F�

Representations
• ordered TRIPLE OF COVECTORS
• cells (“a BOX”) which contain a finite volume
The enclosed-volume is inversely-proportional to its size.

Examples:
• charge density 

abc
ρ~ [in Coulombs/meter3] as in 

abcV
q ∫∫∫= ρ~

• energy density 
abc

u~ [in Joules/meter3] as in 
][8

1
~~

bcaabc
DEu π=

92/80 	 )25 
 εabc
A volume form provides a rule to identify a vector with a
unique two-form (in three dimensions), and vice versa.
Vectors that are obtained from [ordinary] two-forms in
this way are known as pseudovectors.
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0$;:(/ � (48$7,216

bc
D
~

abc
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abbc
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t
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~
,~
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∂

b
H
~

b
E

ab
B

t∂
∂

Ampere-Maxwell Faraday

Gauss

These diagrams are from
W. Burke, Applied Differential Geometry.

To see these rendered in three dimensions, visit the
VRML Gallery of Electromagnetism at

physics.syr.edu/courses/vrml/electromagnetism
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