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• In the teaching of Relativity, there are many references to analogues:

– physical concepts in Galilean and Special Relativity

– mathematical concepts in Euclidean and Minkowskian geometry

• There is a known (but not well-known) relationship
among the Euclidean, Galilean and Minkowskian geometries:

– They are the “affine Cayley-Klein geometries”.
(The de Sitter spacetimes are among the Cayley-Klein geometries.)

• We exploit this fact to develop a new presentation of relativity,
which may be useful for teaching high-school and college students.

• eventual Goal:
Introduce some “spacetime intuition” earlier in the curriculum.

• Goal for this poster: Highlight the foundations of this approach.

• What makes this formulation interesting is that

• the geometry of Galilean Relativity acts like a
“bridge”from Euclidean geometry to Special Relativity.

• a faithful visualization of tensor-algebra
can be incorporated



2A trigonometric analogy (Yaglom)a

aI.M. Yaglom, A Simple Non-Euclidean Geometry and Its Physical Basis (1979).

Euclidean rotation

t′ = ( cos θ)t + (− sin θ)y t′ =





1√
1+v2



 t +





−v√
1+v2



 y

y′ = ( sin θ)t + ( cos θ)y y′ =





v√
1+v2



 t +





1√
1+v2



 y

where v = tan θ.

Galilean boost transformation

t′ = (cosg θ)t + (0sing θ)y t′ =



 1



 t

y′ = (sing θ)t + ( cosg θ)y y′ =



 v



 t +



 1



 y

where v = tang θ.

Yaglom defines cosg θ ≡ 1, sing θ ≡ θ so that tang θ ≡ sing θ

cosg θ
≡ θ.

Lorentz boost transformation

t′ = ( cosh θ)t + (+ sinh θ)y t′ =





1√
1 − v2



 t +





+v√
1 − v2



 y

y′ = ( sinh θ)t + ( cosh θ)y y′ =





v√
1 − v2



 t +





1√
1 − v2



 y

where v = tanh θ.
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The Cayley-Klein Geometries

measure of length between two points

measure of
angle between
two lines

elliptic
(η2 = −1)

parabolic
(η2 = 0)

hyperbolic
(η2 = +1)

elliptic
(ǫ2 = −1) Elliptic Euclidean Hyperbolic

parabolic
(ǫ2 = 0)

co-Euclidean
“anti-Newton-Hooke”

Galilean co-Minkowskian
“Newton-Hooke”

hyperbolic
(ǫ2 = +1) anti-De-Sitter Minkowski De-Sitter

2-dimensional manifolds with

metric signature (+1,−ǫ2) and constant curvature κ = −η2

ds2 = gab dxadxb

=
(1 + η2ǫ2y2)dt2 − (1 − η2t2)ǫ2dy2 − 2η2ǫ2ty dt dy

(1 − η2(t2 − ǫ2y2))2

Column η2 = 0 are the affine Cayley-Klein geometries.

Row ǫ2 = −1 includes the classical non-Euclidean geometries.

Row ǫ2 = +1 are the constant curvature Lorentzian spacetimes.
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The Metric
(Proper Time)

We will be concerned with the “η2 = 0” (or “affine”) geometries.
[Observe that Euclid V, the Parallel Postulate, is valid for these geometries.]
In this case, the line-element reduces to

dS2 = (dt)2 − ǫ2(dy)2

which is a unified (meta-)expression for










(ds2)Euc = (dt)2 + (dy)2 if ǫ2 = −1
(ds2)Gal = (dt)2 if ǫ2 = 0
(ds2)Min = (dt)2 − (dy)2 if ǫ2 = +1

.

Upon introducing the metric tensor, the line-element can be written

dS2 =

(

dt
dy

)T (

1 0
0 −ǫ2

)(

dt
dy

)

.

Since the Galilean metric is degenerate, one needs to provide an additional metric in order
to measure spacelike separations:

dL2 =















− 1

ǫ2
dS2 if ǫ2 6= 0

(dy)2 if ǫ2 = 0
.

The Circle

Define the “CIRCLE of radius R” to be the locus of points (t, y) that is a constant
positive square-interval R2 from a common point (t0, y0).

R2 = (t − t0)
2

− ǫ2(y − y0)
2

In fact, the unit-circle [generally, unit-sphere] provides a
faithful visualization of a symmetric metric tensor.
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The Pole and the Polar
(Visualizing Tensor-Index raising and lowering)

A metric tensor is a symmetric tensor that can be used to assign magnitudes to vectors.
A metric tensor can also provide a rule to identify a vector with a unique covector.

The vector and its covector are [metric-]duals of each other with this metric. Given a
vector V a, in the presence of a metric gab, we can form the combination gabV

a, which
is a covector denoted by Vb. This is known as “index lowering”, a particular move when
performing “index gymnastics”.

gab
metric tensor

y

t

Va

“the pole”

gabV
a = Vb

“the polar [hyperplane]”

through the pole, draw
the tangents to the conic

This construction
is due to W. Burke,
Applied Differential Geometry

–1

–0.5

0

0.5

1

1.5

2

y

–1 –0.5 0.5 1
t







the number of polar hyperplanes of Vb

pierced by the vector V a

(number of “bongs of bell”)





 =

(

square-norm of the vector V a

gabV
aV b

)

In Minkowski spacetime: a timelike vector and a lightlike vector and their metric-duals.
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The Trilogy of the Surveyors
a draft of
the Trilogy
is available

Euclidean

y

t

y

t

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

Galilean

y

t

y

t

Here, where
the tangents
coincide,
“simultaneity”
is absolute.

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

Minkowskian

y

t

y

t

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

Family of surveyors of a two-dimensional plane:
From this point, travel in all possible directions. Stop when your odometer reads 1 mi.
This “calibration curve” defines a circle, with perpendicular as “tangent to the circle”.
Family of observers of a two-dimensional spacetime:
From this event, travel with all possible velocities. Stop when your wristwatch reads 1 s.
This “calibration curve” defines a “circle”, with simultaneous as “tangent to the circle”.
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The Angle
(Rapidity)

Define the “ANGLE-measure between two future-timelike lines ℓ1 and ℓ2”:

Θ =
CIRCULAR arc-LENGTH L intercepted by ℓ1 and ℓ2

radius R of the CIRCLE centered at o

Θ = TANH−1v

θe = tan−1 v
PPPPPq

θg = tang−1v

A
A
A
AU

θm = tanh−1 v

t

ℓ1

ℓ2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Use the [spacelike] square-interval to measure the spacelike arc-length along
the circle t2 − ǫ2y2 = R2:

Θ =
1

R

∫

dL
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For ǫ2 6= 0 cases,

Θ =
1

R

∫

√

dy2 − 1

ǫ2
dt2 =

∫ dy√
R2 + ǫ2y2

=
1

ǫ
sinh−1(ǫy/R)

Thus,
ǫy = R sinh(ǫΘ)

t = R cosh(ǫΘ).

Euclidean case (ǫ2 = −1) Minkowskian case (ǫ2 = +1)

y = R sin(θe) y = R sinh(θm)

t = R cos(θe) t = R cosh(θm)

For the Galilean case (ǫ2 = 0),

θg =
1

R

∫

dL =
1

R

∫

dy =
y

R
.

Thus,
y = Rθg = R sing(θg)

t = R = R cosg(θg)

where cosg(θg) = 1 and sing(θg) = θg

We can write the results for the three cases as

y = R SINHΘ

t = R COSHΘ

the connecting relation (“velocity = tangent(rapidity)”)

v =
y

t
= tan θe = tang θg = tanh θm



9Hypercomplex Numbers?
(Maximum Signal Speed)

Physically, ǫ2 = (clight/cmax)2

Minkowskian cmax = clight (finite): ǫ2 = 1 [but ǫ 6= 1] (double numbers)
Galilean cmax = ∞ (infinite): ǫ2 = 0 [but ǫ 6= 0] (dual numbers)
Euclidean cmax = iclight (finite, imaginary): ǫ2 = −1 (complex numbers)

It is convenient (but not necessary) to introduce the following “generalized complex”or
“hypercomplex” number systems. Consider quantities of the form z = a + ǫb,
where a and b are real-numbers and ǫ is the “generalized imaginary number”.
These quantities can be given a matrix representation:

real 1 =

(

1 0
0 1

)

a =

(

a 0
0 a

)

complex ǫ =

(

0 −1
1 0

)

a + ǫb =

(

a −b
b a

)

Euclidean

dual (ǫ2 = 0 [ǫ 6= 0]) ǫ =

(

0 0
1 0

)

a + ǫb =

(

a 0
b a

)

Galilean

double (ǫ2 = 1 [ǫ 6= 1]) ǫ =

(

0 1
1 0

)

a + ǫb =

(

a b
b a

)

Minkowskian

(these number systems have “divisors of zero”)

Dual (ǫ2 = 0 [ǫ 6= 0]):

1/ǫ implies ǫx = 1

ǫ2x = ǫ

0 = ǫ

impossible!

Double (ǫ2 = 1 [ǫ 6= 1]):

1/(1 + ǫ) implies (1 + ǫ)x = 1

(1 − ǫ2)x = 1 − ǫ

0 = 1 − ǫ

impossible!

Note: One can easily proceed with formal calculations in which ǫ is treated
algebraically but never evaluated until the last step.

It appears all physical quantities involve ǫ2
.
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The Circular Functions
(The Relativistic “Factors”)

Let Θ be a real number.

EXP Θ ≡ exp(ǫΘ)

= 1 + (ǫΘ) +
(ǫΘ)2

2!
+

(ǫΘ)3

3!
+

(ǫΘ)4

4!
+ · · ·

=

[

1 +
(ǫΘ)2

2!
+

(ǫΘ)4

4!
+ · · ·

]

+

[

(ǫΘ) +
(ǫΘ)3

3!
+

(ǫΘ)5

5!
+ · · ·

]

= cosh (ǫΘ) + sinh (ǫΘ)

=

[

1 + ǫ2
Θ2

2!
+ ǫ4

Θ4

4!
+ · · ·

]

+ǫ

[

Θ + ǫ2
Θ3

3!
+ ǫ4

Θ5

5!
+ · · ·

]

= COSH Θ + ǫ SINH Θ

ǫ TANH Θ ≡ tanh(ǫΘ) =
sinh(ǫΘ)

cosh(ǫΘ)
=

ǫ SINH Θ

COSH Θ

Algebraic Identities
1 = COSH2Θ − ǫ

2SINH2Θ

TANH (Θ1 + Θ2) =
TANH Θ1 + TANH Θ2

1 + ǫ2 TANH Θ1 TANH Θ2

COSH Θ = (1 − ǫ
2 TANH2Θ)−1/2

Differential Identities
d

dΘ
EXP Θ = ǫ EXP Θ

d

dΘ
COSH Θ = ǫ2 SINH Θ

d

dΘ
SINH Θ = COSH Θ

d

dΘ
TANH Θ = 1 − ǫ2 TANH 2Θ
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Every vector can be thought of

as the HYPOTENUSE

of some RIGHT triangle.

u

u

0

1

2

1 2

Euclidean decomposition of a vector.

u

u

0

1

2

1 2

Galilean decomposition of a vector.

u

u

0

1

2

1 2

Minkowskian decomposition of a vector.

Project the vector into components parallel and perpendicular to a given direction.
“Drop the perpendicular” by constructing parallels to the tangent of the circle.
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The Rotation
(Boost Transformation)

Consider a linear transformation ~V ′ = R(Θ)~V , where R satisfies:

det R = 1 R(0) = I

RT GR = G R(Θ)R(Φ) = R(Θ + Φ)

In terms of an orthogonal basis {t̂, ŷ} with metric G =

(

1 0
0 −ǫ2

)

, we find the linear
transformation

R(Θ) =







COSH Θ ǫ2SINH Θ

SINH Θ COSH Θ







is a “rotation” for that metric.

–2

–1

1

2

–2 –1 1 2

t

Euclidean
–2

–1

1

2

–2 –1 1 2

t

Galilean
–2

–1

1

2

–2 –1 1 2

t

Minkowskian

Eigenvectors of the Rotations
(“Absolutes”)

eigenvalue eigenvectors

EUC cos θ ± i sin θ (actually, complex) ~0 =

(

0
0

)

(better: invariant vector)

GAL 1 “absolute length” ŷ =

(

0
1

)

“absolute time”

MIN cosh θ ± sinh θ = exp(±θ) k̂ =
1√
2

(

1
1

)

=

√

1 ± v

1 ∓ v
Doppler-Bondi factor and l̂ =

1√
2

(

1
−1

)

“absolute
speed of light”
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Projection onto a Line
Proper-Time (and “Time-Dilation”)

t

y

cos θe cosg θg cosh θm

sin θe

sing θg

sinh θm

Θ

The “proper time”
is the hypotenuse
along the radius.

The “apparent time”
is the projection onto
our observer’s t-axis.

0

1

1

The arrow along the t-axis is a unit-vector in each geometry. Follow the arc along each
“circle” to a line with slope v. Note that the corresponding unit vectors generally have
different projections onto the t-axis.

The Distance between Parallels
Proper-Length (and “Length Contraction”)

t

t t

y = b2

y = b1

ℓ1

ℓ2
ℓM⊥

ℓG⊥

ℓE⊥

Θ
Θ Θ

M

G

E

L = (b2 − b1)COSHΘ
O

The “apparent length”
is the hypotenuse OG,
perpendicular to
our observer’s t-axis.

The “proper length”
is the perpendicular distance
(either OE, OG, OM)
between the parallel lines

Note that E, G, and M are “right angles” in their respective geometries. So, OG (being
the side of the triangle opposite to the “right angle”) is the hypotenuse in each geometry.
(In Galilean relativity, the triangle is degenerate.)

(In special relativity, one sees the above relation in the form
L

COSH Θ
= (b2 − b1). )
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The Law of Cosines
(“The Clock Effect”)

A

B
C

S

~b

~a

~c

~c = ~b + ~a

~c · ~c = ~b ·~b + ~a · ~a + 2~b · ~a
c2 = b2 + a2 + 2ba COSH (m 6 BCS)

In terms of the proper-time elapsed,

(tAB)2 = (tAC)2 + (tCB)2 + 2tACtCB COSH (m 6 BCS)

Comparing this with the identity

(tAC + tCB)2 = (tAC)2 + (tCB)2 + 2tACtCB

and using the facts that cos θe ≤ 1, cosg θg = 1, and cosh θm ≥ 1,
the Law of Cosines implies the following relations:

tAB <tAC + tCB for ǫ2 = −1 “triangle inequality”

tAB =tAC + tCB for ǫ2 = 0 non-“clock effect”

tAB >tAC + tCB for ǫ2 = +1 “clock effect”
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“The Doppler Effect”
a unified trigonometric derivation

0 TS

y = vRt
@

@R

TR

T′
R

y = ct
@@R

y = c(t − TS)
@@R

TRSINH Θ

� TRCOSH Θ -

TRSINH ΘΘ

Moving [Receding] Receiver

TS = TR(COSH Θ − SINH Θ)

νR =























νS(1 − v
c
) Gal

νS

√

1 − v
c

1 + v
c

Min

0 TR

y = vSt
@@I

TS

T′
S

y = ct
@@R

y = −c(t − T ′
S) + vST ′

S

��	

TSCOSH Θ

TSSINH Θ

TSSINH ΘΘ

Moving [Receding] Source

TR = TS(COSH Θ + SINH Θ)

TS = TR
1

(COSH Θ + SINH Θ)

νR =































νS
1

(1 + v
c
)

Gal

νS

√

1 − v
c

1 + v
c

Min

Note: In Minkowskian geometry (ǫ2 = +1),

1

(COSH Θ + SINH Θ)
= (COSH Θ − SINH Θ).



16The Curve of Constant Curvature
The Uniformly Accelerating Observer

Euc

Gal

Min
y

t

–1

1

2

–2 –1 1 2

The curvature ρ of a plane curve is a measure of how the angle φ of the
tangent vector ẏ changes with arc-length s along the curve. We will consider a timelike
plane curve y(t), i.e., a curve whose tangent is everywhere timelike.

The acceleration ρ of a worldline is a measure of how the rapidity φ of the
velocity vector ẏ changes with proper-time s along the curve.

ρ ≡

dφ

ds
=

dφ

dt

dt

ds

=
ÿ

[1 − ǫ2(ẏ)2]3/2

We seek the curve of constant curvature: ρ = a0:
If ǫ2 6= 0,

(y − y0)
2 − 1

ǫ2
(t − t0)

2 =
1

ǫ4
a0

−2

{

if ǫ2 = −1 circle
if ǫ2 = +1 hyperbola

If ǫ2 = 0,
y − y0 =

1

2
a0(t − t0)

2
{

parabola

“uniform acceleration” is an “invariant state of motion”



17Trigonometric Identities
Transformations of spatial-velocity
and spatial-acceleration

Consider an object whose spacetime position is specified by ~y(s), where s is the arc-
length (proper time). Let an inertial-observer O1 study this object and assign it coordinates
y1(t1). Similarly, assign y2(t2) for an inertial-observer O2. Let v21 be the invariant relative
velocity of O2 with respect to O1:

v21 = TANH (Θ20 − Θ10),

where the rapidities are measured with respect to some fiducial timelike axis (a third
observer). It will be convenient to use the abbreviation

Θ21 = Θ20 − Θ10.

First, suppose that ~y is inertial.
If O1 says that ~y moves with spatial velocity dy1

dt1
= vy1 = TANH Θy1,

what does O2 say? That is, express dy2

dt2
= vy2 = TANH Θy2 in terms of Θy1 and Θ21.

vy2 = TANH Θy2

= TANH (Θy1 − Θ21)

=
TANH Θy1 − TANH Θ21

1 − ǫ2TANH Θy1TANH Θ21

=
vy1 − v21

1 − ǫ2vy1v21

Suppose now that ~y is uniformly accelerated.
If O1 says that ~y moves with spatial acceleration d2y1

dt12 = ay1 = ρy
1

COSH3

Θy1

,

what does O2 say? That is, express d2y2

dt22 = ay2 = ρy
1

COSH3

Θy2

in terms of Θy1 and Θ21.

ay2 =
ρy

COSH3Θy2

=
ρy

COSH3(Θy1 − Θ21)

=
ρy

(COSH Θy1COSH Θ21 − ǫ2SINH Θy1SINH Θ21)
3

=
ρy

COSH3Θy1

1

COSH3Θ21 (1 − ǫ2TANH Θy1TANH Θ21)
3

= ay1

(√
1 − ǫ2v21

2

1 − ǫ2vy1v21

)3
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Euclidean Postulate I
Simultaneity

Euclid I : “To draw a unique straight “line” from any point to
any point.”

Euclid V (Playfair) : “Given a line, and a point not on that
line, there exists only one line through that point which
is parallel to (i.e., does not “intersect”) the given line.
[This asserts the existence and uniqueness of a parallel to a
given line through a given point.]

“duality” in projective geometry exchanges points with lines, and so forth...

Euclid I (dual-Playfair) : “Given a point, and a line not through
that point, there exists no point on that line which cannot
be joined (by an “ordinary” line) to the given point.
[This asserts the nonexistence of a non-ordinary line from a
given point.]

Euclid I (spacetime) : “Given an event, and a worldline not ex-
periencing that event, there exists no event on that world-
line which is not “timelike-related” to the given event.
[This asserts the nonexistence of non-timelike-related events
from a given event.]

Loosely speaking, regard

(the spacetime interpretation of) Euclid I
as a statement concerning

“simultaneity with distant events”

spacetime geometry
an event (on a given distant worldline)
that is simultaneous with our given event

Euclidean does not exist
Galilean exists and is unique
Minkowskian exists and is not unique



19
Spacetime Geometry is non-Euclidean

Consider a given point [event],
and a straight line [inertial worldline]
not through [experiencing] that point [event].

Euclidean

y

t

y

t

no points
on this line

are inaccessible to or from O

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

Galilean

y

t

y

t

exactly one event
on this worldline

is inaccessible to or from O

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2

Minkowskian

y

t

y

t

infinitely many events
on this worldline

are inaccessible to or from O

–2

–1

1

2

–2 –1 1 2

–2

–1

1

2

–2 –1 1 2
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I. INTRODUCTION

This is the first of a series of articles in which we expound a unified formalism for two-dimensional Euclidean
space, Galilean spacetime,1 2 and Minkowski spacetime rooted in the geometrical studies of Arthur Cayley and
Felix Klein. Using techniques familiar from the analytic geometry and trigonometry of Euclidean space, we develop
the corresponding analogues for Galilean and Minkowskian spacetimes and provide them with physical interpretations.
This provides a new approach for teaching relativity and allows us to clarify many terms used in relativity.

Our presentation is primarily inspired by two works:

• I.M. Yaglom’s A Simple Non-Euclidean Geometry and Its Physical Basis,3

which is an insightful study of the geometry associated with the Galilean transformations,

• E.F. Taylor and J.A. Wheeler’s Spacetime Physics,4

which presents Special Relativity from a geometrical viewpoint.

II. THE TRILOGY OF THE SURVEYORS

(These passages were inspired by “The Parable of the Surveyors” in E.F. Taylor and J.A. Wheeler’s Spacetime
Physics.5 )

A. The Euclidean Surveyors

Once upon a time, a student of Euclid was asked to devise a method to survey an unexplored territory of the
kingdom, a featureless plane stretching as far as the eye can see. So, he organized a team of surveyors and equipped
each surveyor with a pair of ideal measuring tools. The first tool is an “odometer,” or “rolling tape-measure,” which
measures the distance a surveyor has traveled along his path, in units of miles. The second tool is a very long ruler,
calibrated in feet, which measures the perpendicular distance from his path to a distant point not his path.

He instructed the surveyors to begin at a common origin, O, then to travel in a straight line in all possible spatial
directions in the plane. Each is instructed to mark the point with a flag when his tape-measure reads “t=1 mi.”
What is the locus of these points? Of course, the result of the experiment is that these points lie on a “circle with
radius R = 1 mi.” This circle, the Euclidean student declared, provides the basic calibration curve for measuring the
separation between points on this plane. Indeed, later surveys of this territory would show that such a circle could
be constructed from any origin and be extended to any radius.

In order to complete the survey of the plane, each surveyor is told to assign to each point a pair of coordinates
(t, y), where t represents the displacement “along his path” (as measured by his tape-measure) and y represents the
displacement “perpendicular to his path” (as measured by his ruler). What does “perpendicular to his path” mean?
Geometrically, it means “along the tangent-line to the circle of radius t” at his point on that circle. Operationally,
this means “along a line of points that he regards as having the same value of t.”

When the radial surveyors’ data were collected, it was noticed that for any given point P on the circle, there was
general disagreement on its assigned t-displacements and on its assigned y-displacements from the origin O. That is,
comparing the measurements from two radial surveyors U and U

′, we have

(tP − tO) 6= (t′P − t
′

O) and (yP − yO) 6= (y′

P − y
′

O).
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FIG. 1: The Euclidean surveyors define a unit circle, the basic calibration curve for measuring separations in space. Each
surveyor operationally defines “perpendicular to his radial path” as “along his tangent-line to the circle.”

However, there was unanimous agreement on the quadratic quantity (tP − tO)2 + ((yP − yO)/k)2:

(tP − tO)2 +

(

yP − yO

k

)2

= (t′P − t
′

O)2 +

(

y
′

P − y
′

O

k

)2

,

where k is a unit-conversion constant,6 which simplifies the arithmetic. The Euclideans called this quadratic quantity
the “square-distance” from point O, which provides an invariant measure of the separation between points P and O.
(See Fig. 1) Indeed, each radial surveyor used the same equation to describe the circle:

(t − tO)2 +

(

y − yO

k

)2

= R
2
.

In fact, by comparing the unlabeled plots from each radial surveyor, the Euclidean student could not distinguish
among these radial surveyors. So, no radial surveyor is preferred over any other. However, when the labeling is
accounted for, there is a way to relate the measurements of one radial surveyor with those of another.7

Having been successful at defining an invariant measure of separation between pairs of points, the Euclidean student
now wished to define an invariant measure of separation between pairs of radial surveyor-paths through O. It seemed
reasonable to define this measure using the signed arc-length Se of the circle cut by those paths. However, this
measure was deemed to be somewhat limited because the arc-length Se depends on the radius R of the circle used to
determine it. After a little analysis, it was observed that for a given pair of surveyor-paths, the corresponding values
of Se and R are in constant proportion. So, in order for the measure of separation to be independent of the size of
the circle used, the Euclidean student defined a quantity called the signed “angle” by

θe ≡
(

Se/k

R

)

,

where the unit-conversion constant k is used to make this angle dimensionless.
The Euclidean student observed that, since the arc-length Se is bounded, the range of the angle θe is bounded:

−π < θe ≤ π, where π is a numerical constant that was determined to be approximately 3.14159. Since the arc-length
is additive, the angle measure is also an additive quantity. That is, for radial surveyor-paths OA, OB, and OC from
O through the respective points A, B, and C on the circle, we have

θe,AB + θe,BC = θe,AC ,

where, for example, θe,AB is the signed-angle from OA to OB.
Many years later, another student of Euclid defined another invariant measure of separation between pairs of radial

surveyor-paths in terms of the parallel and perpendicular projections, (t − tO) and (y − yO), respectively, of one



Salgado Spacetime Trigonometry DRAFT Version: 7/21/2006 3

surveyor path onto another surveyor path. This quantity, called the “slope,” is defined by ve ≡ (y − yO)/(t − tO),
which is expressed in units of miles/ft. This can be expressed in terms of the angle θe using

ve

k
≡ (y − yO)/k

(t − tO)
= tan

(

Se/k

R

)

= tan(θe),

where we have used the unit-conversion constant k since the trigonometric tangent function and its argument are
dimensionless. Observe that the range of the slope is unbounded: −∞ < ve < ∞ [in units of ft/mile]. Furthermore,
unlike the angle measure, the slope is not an additive quantity:

ve,AB + ve,BC 6= ve,AC .

Instead,

ve,AB + ve,BC

1 − ve,ABve,BC/k2
= ve,AC .

As a postscript to this story, the use of the unit-conversion constant k was eventually seen as an unnecessary nuisance
in the arithmetic. By expressing “ruler measurements” for “y” (traditionally in units of feet) in the “odometer units”
used by “t” (traditionally in units of miles), the need to use k was eliminated. With this advancement, the Euclidean
results can be written more simply as:

(t − tO)2 + (y − yO)
2

= R
2

θe ≡ Se/R θe,AB + θe,BC = θe,AC

ve ≡ (y − yO)

(t − tO)
= tan(Se/R) = tan θe

ve,AB + ve,BC

1 − ve,ABve,BC

= ve,AC

B. The Galilean Surveyors

In the study of kinematics, one naturally draws “distance vs. time” graphs. This is a different kind of space, called
“spacetime,” whose points are called “events.” Thus, a “distance vs. time” graph is sometimes called a “spacetime
diagram.” How might a student of Galileo proceed to survey spacetime? He decided to follow an analogue of the
Euclidean procedure used in the preceding section.

He organized a team of “spacetime surveyors,” henceforth, called “observers”. As time elapses, each observer will
trace out a path in spacetime called his “worldline.” Those observers who travel inertially will trace out straight
worldlines in spacetime.

Each observer is equipped with a pair of ideal measuring tools. The first tool is a “chronometer,” or “wristwatch,”
which measures the interval of time that has elapsed along his worldline, in units of seconds. The second tool is a
very long ruler, calibrated in meters, which measures the “[Galilean-]perpendicular” distance from his worldline to a
distant event not on his worldline. [We will more fully define this notion of perpendicularity shortly.]

He instructed the observers to begin at a common event, O, then to travel inertially with all possible velocities
along a common straight line in space. Each is instructed to mark the event with a firecracker explosion when his
wristwatch reads “t = 1 second”. What is the locus of these events on a spacetime diagram?

Due to the technological limitations of their day, the maximum speed attempted by the Galilean observers was
a small fraction of the speed of light, clight, which they knew to be finite. Nevertheless, they boldly extrapolated
their experimental observations and reached the conclusion that these events lie on a vertical line in our spacetime
diagram, which they might have called a “[future Galilean] circle with radius R = 1 second.” This [Galilean] circle,
the Galilean student declared, provides the basic calibration curve for measuring the separation between events in
spacetime. Note that this declaration implicitly asserts that all finite speeds (including those faster than the speed of
light, clight) are theoretically attainable by observers!

In order to complete the survey of the spacetime, each observer is told to assign to each event a pair of coordinates
(t, y), where t represents the temporal displacement “along his worldline” (as measured by his wristwatch) and y

represents the spatial-displacement “perpendicular to his worldline” (as measured by his ruler). But what does
“perpendicular to his worldline” mean here? Geometrically, following the Euclidean procedure, this means “along the
tangent-line to the [Galilean] circle.” (See Fig. 2.) Operationally, this means “along a line of events that he regards
as having the same value of t.” Physically, this means “along a line of events that he regards as simultaneous.”
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FIG. 2: The Galilean observers define a “[Galilean] unit circle,” the basic calibration curve for measuring intervals in spacetime.
Each inertial observer operationally defines “perpendicular to his worldline” as “along his tangent-line to the [Galilean] circle.”
Physically, the events that lie on a given line perpendicular to his worldline are simultaneous according to this observer.

When the observers’ data were collected, it was noticed that for any given event P on the Galilean circle, there was
general disagreement on its assigned y-displacements from the origin O. That is, comparing the measurements from
two inertial observers U and U

′, we have

(yP − yO) 6= (y′

P − y
′

O).

However, there was unanimous agreement on its assigned t-displacements,

(tP − tO) = (t′P − t
′

O),

and, therefore, on the quadratic quantity (tP − tO)2:

(tP − tO)2 = (t′P − t
′

O)2.

Inspired by the Euclidean observers, the Galileans decided to call this quadratic quantity the “[Galilean] square-
interval,” which provides an invariant measure of the separation between events P and O. (See Fig. 2) Indeed, each
inertial observer used the same equation to describe the [Galilean] circle:

(t − tO)2 = R
2
.

In fact, by comparing the unlabeled plots from each inertial observer, the Galilean student could not distinguish
among these inertial observers. So, no inertial observer is preferred over any other. However, when the labeling is
accounted for, there is a way to relate the measurements of one inertial observer with those of another.8

The Galilean observers noted several geometrical features not seen by the Euclidean surveyors. First, about half of
the spacetime could not be surveyed by the inertial observers starting at event O. Even if the experiment had been
expanded to include inertial observers that would end up meeting at event O, the key feature noted was that there
was an inaccessible radial direction to or from event O on their spacetime diagrams. This corresponds to a speed
that was unattainable by the observers through event O. Moreover, all of these observers determine the same value
for this unattainable speed: the universal constant cmax,g whose value was experimentally extrapolated to be infinite.
Second, for any given Galilean circle, the tangent-lines corresponding to different radii coincided. Physically, this was
interpreted by saying that “simultaneity is absolute.” Moreover, for a given pair of events on a given tangent-line to
the Galilean circle, all observers determine the same value for the spatial separation between that pair. Physically,
this was interpreted by saying that “the measured length of an object [whose bounding worldlines pass through those
events] is absolute.”

Following the Euclideans, the Galileans also wished to define an invariant measure of separation between pairs of
inertial observer-worldlines through O. They defined that separation in terms of the [Galilean] arc-length Sg of a
[Galilean] circle of radius R cut by those worldlines. They defined a quantity analogous to the Euclidean angle,

θg ≡
(

Sg/kg

R

)

,
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called the “Galilean-angle,” or, more physically, the “Galilean rapidity.” Note that, in order for this angle to be
dimensionless, one must introduce a unit-conversion constant kg with units of meters/second. For ease of comparison
with the Minkowskian case later, we will choose kg = clight. Since the arc-length Sg is unbounded, the rapidity θg is
unbounded: −∞ < θg < ∞. Since the [Galilean] arc-length is additive, the [Galilean] rapidity measure is an additive
quantity. That is, for inertial observer-paths from O through events A, B, and C on the [Galilean] circle:

θg,AB + θg,BC = θg,AC .

where, for example, θg,AB is the signed Galilean-rapidity from OA to OB.
They also defined another measure of separation between pairs of observer worldlines analogous to the slope, called

the “velocity,” by vg ≡ (y − yO)/(t − tO), where (t− tO) is the elapsed-time and (y − yO) is the spatial-displacement
from event O. The velocity is expressed in units of meters/second. The Galilean observers were pleasantly surprised
to find that the Galilean-rapidity is directly-proportional to the velocity

vg

kg

≡ (y − yO)/kg

(t − tO)
=

(

Sg/kg

R

)

= θg,

differing only by a unit-conversion constant. Thus, the velocity is also unbounded: −∞ < vg < ∞ [in units of
meters/second], as well as additive

vg,AB + vg,BC = vg,AC .

This can be a great convenience for doing calculations in Galilean relativity. In particular, with the emphasis on
velocity, there is little need to be concerned with [Galilean] rapidity and the unit-conversion constant kg. However,
the failure to recognize the distinction between [Galilean] rapidity and velocity will become one source of confusion
for Galileans who will try to understand more modern models of spacetime.

C. The Minkowskian Surveyors

Consider now a technologically-advanced team of inertial observers, who can now attempt speeds comparable to
clight. If the same experiment were repeated, what is the locus of these events on a spacetime diagram?

Surprisingly [to the Galileans], the result of such an experiment9 is that these events lie not on a straight line,
but on a hyperbola in spacetime, which we call a “[future Minkowskian] circle with radius R = 1 second.” This, of
course, is consistent with the experimental results obtained by the Galilean observers since, for the small range of
slow velocities that they attempted, the line is a good approximation to the hyperbola.

In the assignment of coordinates (t, y), what does “perpendicular to his worldline” mean here? Geometrically, this
still means “along the tangent-line to the [Minkowskian] circle.” Operationally, this still means “along a line of events
that he regards as having the same value of t.” Physically, this still means “along a line of events that he regards as
simultaneous.”

When the observers’ data were collected, it was noticed that for any given event P on the Minkowskian circle, there
was general disagreement on its assigned t-displacements and on its assigned y-displacements. That is, comparing the
measurements from two inertial observers U and U

′, we have

(tP − tO) 6= (t′P − t
′

O) and (yP − yO) 6= (y′

P − y
′

O).

However, there was unanimous agreement on the quadratic quantity (tP − tO)2 − ((yP − yO)/clight)
2, i.e.,

(

tP − tO

)2

−
(

yP − yO

clight

)2

= (t′P − t
′

O)2 −
(

y
′

P − y
′

O

clight

)2

,

where, at this stage, clight is a unit-conversion constant10 that we will call km. The Minkowskians decided to call
this quadratic quantity the “[Minkowskian] square-interval,” which provides an invariant measure of the separation
between events P and O. Indeed, when the surveyors’ plots were compared, it was also realized that all surveyors
describe the same set of events on their Minkowskian circles

(t − tO)2 −
(

y − yO

clight

)2

= R
2
.
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FIG. 3: The Minkowskian observers define a “[Minkowskian] unit circle,” the basic calibration curve for measuring intervals in
spacetime. (For comparison, we have included the efforts of the Galilean observers for their range of velocities. Note the units
on the spatial axis.) Each inertial observer operationally defines “perpendicular to his worldline” as “along his tangent-line
to the [Minkowskian] circle.” Physically, the events that lie on a given line perpendicular to his worldline are simultaneous
according to this observer.

In fact, by comparing the unlabeled plots from each inertial observer, the Minkowskian student could not distinguish
among these inertial observers. So, no inertial observer is preferred over any other. However, when the labeling is
accounted for, there is a way to relate the measurements of one inertial observer with those of another.11

The Minkowskian observers noted several geometrical features in conflict with those seen by the Galilean observers.
First, there were infinitely many inaccessible radial directions to or from event O on their spacetime diagrams, which
correspond to infinitely many speeds unattainable by the observers through event O. Moreover, all observers determine
the same value for the least upper bound of the attainable speeds: the universal constant cmax,m whose numerical
value is measured to be equal to the speed of light clight. (Note that the speed of light clight plays two roles, one
as a unit-conversion constant and the other as a maximum signal speed. We will emphasize this point in the next
section.) Second, for a given Minkowskian circle, the tangent-lines corresponding to different radii of the same circle
did not coincide. Physically, this was interpreted to mean that “simultaneity is, in fact, not absolute.” Furthermore,
the measured length of an object is not absolute.

The Minkowskian observers also wished to define a measure of separation between pairs of concurrent inertial
observer-worldlines. Following the Euclidean and Galilean procedure, they defined the separation in terms of the
arc-length Sm of a [Minkowskian] circle of radius R cut by those worldlines. The “Minkowski-angle”, also known as
the “rapidity,” was defined by

θm ≡
(

Sm/km

R

)

,

and the velocity by vm ≡ (y − yO)/(t − tO). In this case, however, the velocity and the rapidity are related by

vm

km

≡ (y − yO)/km

(t − tO)
= tanh

(

Sm/km

R

)

= tanh (θm) ,

Observe that the range of the rapidity is unbounded: −∞ < θm < ∞, whereas the velocity is bounded: −cmax,m <

vm < cmax,m. Furthermore, unlike the rapidity measure, the velocity is not an additive quantity:

vm,AB + vm,BC 6= vm,AC .

Instead,

vm,AB + vm,BC

1 + vm,ABvm,BC/k2
m

= vm,AC .

These results are also in conflict with the results obtained by the Galilean observers.



Salgado Spacetime Trigonometry DRAFT Version: 7/21/2006 7

D. An observation about clight

This trilogy suggests a similarity among these three geometries, which we will develop more fully in a subsequent
article. Here, we begin to make precise those analogies by focusing on the line-elements of the three geometries.

Consider two infinitesimally-close points12 O and P in each of two-dimensional Euclidean space, Galilean spacetime,
and Minkowski spacetime. Let us write down the line-elements13 or “infinitesimal square-intervals” for the three
geometries:

(ds
2)Euc = (dt)2 +

(

dy

k

)2

(1a)

(ds
2)Gal = (dt)2 (1b)

(ds
2)Min = (dt)2 −

(

dy

clight

)2

, (1c)

where, in our spacetime diagram, dt is the displacement from O to P along the horizontal axis and dy is the displace-
ment from O to P along with the vertical axis. In order to facilitate the comparison of the three geometries, let us
express the Euclidean measure of distance between two points in terms of the time it takes light to travel between
them. Thus,

(ds
2)Euc = (dt)2 +

(

dy

clight

)2

,

where (ds
2)Euc is in units of square-seconds, (dt) is in units of seconds and (dy) is in distance units of light-seconds.

We emphasize that, here, clight plays the role of a convenient unit-conversion constant between the coordinates t and
y. In this role, it has no physical significance.

Now, let us write

(ds
2)Euc = (dt)2 − (−1)

(

dy

clight

)2

(2a)

(ds
2)Gal = (dt)2 − (0)

(

dy

clight

)2

(2b)

(ds
2)Min = (dt)2 − (+1)

(

dy

clight

)2

, (2c)

or in a unified way as

dS
2 = (ds

2)ǫ = (dt)2 − ǫ
2

(

dy

clight

)2

, (3)

where ǫ
2 is a dimensionless quantity we will call the “indicator,” which can take the value −1, 0, or 1, corresponding

to the Euclidean, Galilean, and Minkowskian cases, respectively. [We will defer the discussion of the indeterminate ǫ

for a later section.] Physically, the indicator can be interpreted as

ǫ
2 ≡

(

clight

cmax

)2

(4)

where cmax is the maximum signal speed of the particular spacetime theory. For the Minkowskian case, we have
cmax = clight, which can be inferred from Einstein’s second postulate. For the Galilean case, we have cmax = ∞
since there is no upper bound on the speed of signal transmission in Galilean relativity. For consistency, if we were
to interpret the Euclidean case as a spacetime theory, we would say cmax = iclight, where i is the complex number√
−1.14

Recognizing the role of clight as merely a conversion factor in these equations, it is now convenient to redefine
“y/clight” as “y” (which is now measured in seconds) so that we can write

dS
2 = (ds

2)ǫ = dt
2 − ǫ

2
dy

2
, (5)

where t and y are real-valued. Henceforth, we will use words and symbols in UPPER-CASE letters to indicate that
the represented quantity has a dependence on the indicator ǫ

2. We will do this when emphasis is required. This
formalism will allow us to discuss aspects of the three geometries and their physical interpretations in a unified way.
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E. Postulates for Relativity

Consider the following formulation of the two postulates1516171819 for “relativity”:

1. The laws of physics are the same for all inertial observers.

2. There is a real-valued maximum signal speed, cmax, and it is the same for all observers.

Special relativity declares the maximum signal speed to be the speed of light clight = 2.99792458× 108 m/s. In terms
of the indicator (4), special relativity corresponds to ǫ

2 = 1. Galilean relativity, however, implicitly declares the
maximum signal speed to be infinite. Thus, Galilean relativity corresponds to ǫ

2 = 0.

In a subsequent article, we will more fully develop a unified presentation for Euclidean space, Galilean spacetime,
and Minkowskian spacetime.
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